Activation of phosphatidylinositol-3'-kinase/AKT signaling is essential in hepatoblastoma survival.
نویسندگان
چکیده
PURPOSE Hepatoblastoma represents the most frequent malignant liver tumor in childhood. The phosphatidylinositol-3'-kinase (PI3K)/AKT pathway is crucial in downstream signaling of multiple receptor tyrosine kinases of pathogenic importance in hepatoblastoma. Increased PI3K/AKT signaling pathway activity and activating mutations of PIK3CA, encoding a PI3K catalytic subunit, have been reported in different childhood tumors. The current study was done to analyze the role of PI3K/AKT signaling in hepatoblastoma. EXPERIMENTAL DESIGN Immunohistochemical stainings of (Ser473)-phosphorylated (p)-AKT protein, its targets p-(Ser9)-GSK-3beta and p-(Ser2448)-mTOR, as well as the cell cycle regulators Cyclin D1, p27(KIP1), and p21(CIP1) were done and the PIK3CA gene was screened for mutations. In vitro, two hepatoblastoma cell lines treated with the PI3K inhibitor LY294002 were analyzed for AKT and GSK-3beta phosphorylation, cell proliferation, and apoptosis. Additionally, simultaneous treatments of hepatoblastoma with LY294002 and cytotoxic drugs were carried out. RESULTS Most tumors strongly expressed p-AKT, p-GSK-3beta, and p-mTOR; subgroups showed significant Cyclin D1, p27(KIP1), and p21(CIP1) expression. One hepatoblastoma carried an E545A mutation in the PIK3CA gene. In vitro, PI3K inhibition diminished hepatoblastoma cell growth being accompanied by reduced AKT and GSK-3beta phosphorylation. Flow cytometry and 4', 6-diamidino-2-phenylindole stainings showed that PI3K pathway inhibition leads to a substantial increase in apoptosis and a decrease in cellular proliferation linked to reduced Cyclin D1 and increased p27(KIP1) levels. Simultaneous treatment of hepatoblastoma cell lines with LY294002 and cytotoxic drugs resulted in positive interactions. CONCLUSIONS Our findings imply that PI3K signaling plays an essential role in growth control of hepatoblastoma and might be successfully targeted in multimodal therapeutic strategies.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملThrombopoietin stimulates migration and activates multiple signaling pathways in hepatoblastoma cells.
Thrombopoietin (TPO), a cytokine that participates in the differentiation and maturation of megakaryocytes, is produced in the liver, but only limited information is available on the biological response of liver-derived cells to TPO. In this study, we investigated whether HepG2 cells express c-Mpl, the receptor for TPO, and whether TPO elicits biological responses and intracellular signaling in...
متن کاملAntiapoptotic signaling in LNCaP prostate cancer cells: a survival signaling pathway independent of phosphatidylinositol 3'-kinase and Akt/protein kinase B.
Constitutive activation of the phosphatidylinositol 3'-kinase (PI3 kinase)-Akt/protein kinase B (PKB) "survival signaling" pathway is a likely mechanism by which many cancers become refractory to cytotoxic therapy. In LNCaP prostate cancer cells, the PTEN phosphoinositide phosphatase is inactivated, leading to constitutive activation of Akt/PKB and resistance to apoptosis. However, apoptosis an...
متن کاملGlutamine relieves oxidative stress through PI3K/Akt signaling pathway in DSS-induced ulcerative colitis mice
Objective(s): Ulcerative colitis (UC) is a kind of complex immune disease, and a major cause of destruction of intestinal barrier and oxidative stress in this field. In this paper, glutamine (Gln) was believed to offer protection against oxidative stress injury in colitis mice.Materials and Methods: Thirty mice were randomly assigned int...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 15 14 شماره
صفحات -
تاریخ انتشار 2009